Method for Measuring Solar Reflectance of Retroreflective Materials Using Emitting-Receiving Optical Fiber

Hiroyuki IYOTA*¹, Hideki SAKAI*², Kazuo EMURA*², Norio IGAWA*², Hideya Shimada*¹ and Nobuya Nishimura*¹

*1Dept. of Mechanical Engineering
 *2Dept. of Housing and Environmental Design

Osaka City University Japan

Presented at the Second International Conference on Countermeasures to Urban Heat Islands Sep. 21-23, 2009, Berkeley, California, U.S.A.

My Task in our research

- Developing high performance retroreflective paint contained glass beads for anti-heat island
 - Investigation of the controllability of the retroreflective properties by drying process.
 - Optimization of the drying/paint conditions

To drying process

- Low environmental burden
- ·Improve products quality

As a first step, ongoing investigation ...

A simple and instantly retroreflenctance measurement method

Motivation and challenges

Requirements for retroreflectance measurement

- Small size equipment
 (JIS recommend 15m distance from the object to light detector/source)
- Simple and instant measurement

(on-site, in-situ measurement)

 Angle dependency measurement in Visible and Infrared band

(Anti-heat island materials)

Background (Measurement)

Experimental apparatus for research of drying

Idea of the retroreflectance measurement is form this apparatus.

Fiber probe

Measurement for retroreflectance

Fiber head for emitting $(d = 400 \mu m \times 6)$

Stainless steel sheath (d = 6.5 mm)

Emitting-Receiving Optical Fiber

R400-7-VIS/NIR (Ocean Optics Co, Ltd.)

Multi mode, (400 ~ 2,100 nm) Numerical aperture (NA) = 0.22

Mini-spectrometers Measurement for retroreflectance

Measurement system

Retroreflective materials

Standardized Method

Definition of spectral retroreflective strength Rst(λ)

The signal observed by this optical fiber is not only 'ideal retroreflected light'.

Standardized Method

Definition of spectral retroreflective strength Rst(λ)

Spectralon 10

Definition of Solar Retroreflective strength Rst

$$Rst = \frac{\sum_{\lambda=400}^{1715} Rst(\lambda)E(\lambda)\Delta\lambda}{\sum_{\lambda=400}^{1715} E(\lambda)\Delta\lambda}$$

E(λ): spectral direct solar radiation (defined in ISO 9845-1)

The weighted integration of the measured spectral retroreflective strength on between wavelength of <u>400 and 1715</u>, using spectral direct solar radiation defined in ISO 9845.

Results (solar retroreflective strength)

Table 1 Experimental Result: Angular Dependency of Retroreflective Strength R_{st} of the Sample Sheets Measured by the Emitting-Receiving Optical Fiber System. Retroreflectance R_{Ret} Obtained in the Previous Paper is also Shown for Comparison

	Retroreflectance	Retroreflective strength				
Sample No. (type)	R _{Ret} [%]	R _{st} [-]				
Incident/observed angle	7°	7°	15°	30°	45°	60°
1 (Prism-array)	29.5	279	265	148	66	35
2 (Prism-array)	23.5	276	210	212	198	130
3 (Capsule-lens)	17.8	116	117	118	102	38
4 (Bead-embedded)	12.9	82	85	85	35	6
5 (Bead-embedded)	4.9	11	12	13	13	10

Optical fiber measurement (simple and instantly)

Integrating sphere measurement (accurate and cumbersome)

Relationships between Solar Retroreflectance R_{Ret} and Solar Retroreflective Strength R_{st}

●R_{st} correlate well with R_{Ret} [-]

The emitting-receiving optical fiber system can be used as a simple solar retroreflectance measuring method.

Angular dependency of Retroreflective strength R_{st} measured by the Emitting-Receiving Optical Fiber system

- ▲△Prism has a critical angle for retroreflection, and its reflection mechanism works well only within the critical angle.
- Prism-array-type sheets are suitable for preventing heat from sunlight at particular solar positions.
- O□Ball-shaped lens has no strict critical angle for reflection.
- These types are effective at a wide range of solar positions.

Outlook

- 1. Make clear the effect of NA value on the observed signals
- 2. Propose a simple Bidirectional Reflectance Distribution Function (BRDF) or Bidirectional Scattering Surface Reflectance Function (BSSRF) of retroreflective materials for numerical simulation and performance evaluation
- Optimal drying condition and how to regulate the retroreflective properties of coating contained glass beads
- 4. Developing simple and automatic measurement system

Conclusions

The following results have been obtained in the present study.

- 1) A simple method was proposed for measuring the retroreflective performance using an emitting-receiving optical fiber system. The values measured using this method correlate well with the retroreflections obtained by an accurate measurement.
- 2) The retroreflectances of prism-array retroreflective materials are generally high. However, their angular dependence is large, and the retroreflective strength decreases sharply at large angles.
- 3) The retroreflectances of capsule-lens and bead-embedded retroreflective materials are less than half those of the prism-array type at small incident/observing angles. However, their angular dependences are small.